Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A.

نویسندگان

  • S Himpel
  • P Panzer
  • K Eirmbter
  • H Czajkowska
  • M Sayed
  • L C Packman
  • T Blundell
  • H Kentrup
  • J Grötzinger
  • H G Joost
  • W Becker
چکیده

Protein kinases of the DYRK ('dual-specificity tyrosine-regulated kinase') family are characterized by a conserved Tyr-Xaa-Tyr motif (Tyr-319-Tyr-321) in a position exactly corresponding to the activation motif of the mitogen-activated protein kinase (MAP kinase) family (Thr-Xaa-Tyr). In a molecular model of the catalytic domain of DYRK1A, the orientation of phosphorylated Tyr-321 is strikingly similar to that of Tyr-185 in the known structure of the activated MAP kinase, extracellular-signal-regulated kinase 2. Consistent with our model, substitution of Tyr-321 but not of Tyr-319 by phenylalanine markedly reduced the enzymic activity of recombinant DYRK1A expressed in either Escherichia coli or mammalian cells. Direct identification of phosphorylated residues by tandem MS confirmed that Tyr-321, but not Tyr-319, was phosphorylated. When expressed in COS-7 cells, DYRK1A was found to be fully phosphorylated on Tyr-321. A catalytically inactive mutant of DYRK1A contained no detectable phosphotyrosine, indicating that Tyr-321 is autophosphorylated by DYRK1A. MS identified Tyr-111 and Ser-97 as additional autophosphorylation sites in the non-catalytic N-terminal domain of bacterially expressed DYRK1A. Enzymic activity was not affected in the DYRK1A-Y111F mutant. The present experimental data and the molecular model indicate that the activity of DYRK1A is dependent on the autophosphorylation of a conserved tyrosine residue in the activation loop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective inhibition of the kinase DYRK1A by targeting its folding process.

Autophosphorylation of amino-acid residues is part of the folding process of various protein kinases. Conventional chemical screening of mature kinases has missed inhibitors that selectively interfere with the folding process. Here we report a cell-based assay that evaluates inhibition of a kinase at a transitional state during the folding process and identify a folding intermediate-selective i...

متن کامل

Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation.

DYRK1A is a dual-specificity protein kinase that autophosphorylates a conserved tyrosine residue in the activation loop but phosphorylates exogenous substrates only at serine or threonine residues. Tyrosine autophosphorylation of DYRKs is a one-off event that takes place during translation and induces the activation of the kinase. Here we characterize the beta-carboline alkaloid harmine as a po...

متن کامل

Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ

The protein kinase family includes attractive targets for drug development. Methods for screening of kinase inhibitors remain largely limited to in vitro catalytic assays. It has been shown that ATP-competitive inhibitors antagonize interaction between the target kinase and kinase-specific co-chaperone CDC37 in living cells. Here we show a cell-based method to screen kinase inhibitors using fus...

متن کامل

In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...

متن کامل

Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors

DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 359 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001